Topological Fukaya category and mirror symmetry for punctured surfaces

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Remarks On A-branes, Mirror Symmetry, And The Fukaya Category

We discuss D-branes of the topological A-model (A-branes), which are believed to be closely related to the Fukaya category. We give string theory arguments which show that A-branes are not necessarily Lagrangian submanifolds in the Calabi-Yau: more general coisotropic branes are also allowed, if the line bundle on the brane is not flat. We show that a coisotropic A-brane has a natural structure...

متن کامل

Topological mirror symmetry with fluxes

Motivated by SU(3) structure compactifications, we show explicitly how to construct half–flat topological mirrors to Calabi–Yau manifolds with NS fluxes. Units of flux are exchanged with torsion factors in the cohomology of the mirror; this is the topological complement of previous differential–geometric mirror rules. The construction modifies explicit SYZ fibrations for compact Calabi–Yaus. Th...

متن کامل

Constructible Sheaves and the Fukaya Category

Let X be a compact real analytic manifold, and let T ∗X be its cotangent bundle. Let Sh(X) be the triangulated dg category of bounded, constructible complexes of sheaves on X. In this paper, we develop a Fukaya A∞-category Fuk(T ∗X) whose objects are exact, not necessarily compact Lagrangian branes in the cotangent bundle. We write TwFuk(T ∗X) for the A∞-triangulated envelope of Fuk(T ∗X) consi...

متن کامل

Weighted Blowups and Mirror Symmetry for Toric Surfaces

This paper explores homological mirror symmetry for weighted blowups of toric varieties. It will be shown that both the A-model and B-model categories have natural semiorthogonal decompositions. An explicit equivalence of the right orthogonal categories will be shown for the case of toric surfaces.

متن کامل

Mirror symmetry for topological sigma models with generalized Kähler geometry

We consider topological sigma models with generalized Kähler target spaces. The mirror map is constructed explicitly for a special class of target spaces and the topological A and B model are shown to be mirror pairs in the sense that the observables, the instantons and the anomalies are mapped to each other. We also apply the construction to open topological models and show that A branes are m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Compositio Mathematica

سال: 2019

ISSN: 0010-437X,1570-5846

DOI: 10.1112/s0010437x19007073